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Abstract. We study the renormalization of normal mixing matrices, which include hermitian and unitary
matrices as particular cases. We give a minimal, multiplicative parameterization of counterterms, and
compute the renormalized Lagrangian to one-loop order in several simple models with N species of fermions,
both in on-shell and MS schemes. In the on-shell scheme the mass-degenerate case is considered separately.

1 Introduction

In theories with many particle species which mix non-
trivially due to interactions, the mixing matrix generally
requires renormalization like any other parameters in the
Lagrangian. Such a renormalization has been considered
in [1] within the context of the standard model (SM), and
in extensions of the SM with Majorana neutrinos in [2].

In this paper we consider mixing-matrix renormaliza-
tion in a more generic setting. Specifically, we study the
renormalization of normal mixing matrices (i.e., matrices
commuting with their adjoint), which include hermitian
and unitary matrices as particular cases. We give a mini-
mal, multiplicative parameterization of counterterms, and
compute the renormalized Lagrangian to one-loop order in
several simple models with N species of fermions, both in
on-shell (OS) and MS schemes. In the on-shell scheme the
mass-degenerate case is considered separately. We work in
dimensional regularization [3] throughout this paper.

Mixing-matrix renormalization in the SM, and in its
extensions and low-energy effective theories, is usually
closely related to other issues such as renormalization of
theories with unstable particles, gauge invariance of the
renormalization procedure, and CP violation. The latter
is beyond the scope of this paper. We assume all parti-
cles to be stable. If that were not the case, one-loop self-
energy parts should be replaced by their dispersive parts
in OS renormalization conditions [4]. Gauge invariance of
the renormalized CKM matrix in the SM has been consid-
ered in [5,6]. In our case, abelian gauge invariance plays a
role in the discussion of unitary mixing matrices in Sect. 4.

In the next section we consider a model withN fermion
flavors coupled to a scalar particle through a Yukawa inter-
action, specified by a hermitian coupling matrix. Renor-
malization of this model, and in particular the structure of
its counterterms, is considered in detail and computed at
the one-loop level. The results are generalized to normal
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matrices in Sect. 3. The particular case of unitary interac-
tion matrices is treated in Sect. 4, where the relation be-
tween our parameterization of counterterms and the one
commonly in use in the literature is discussed. In Sect. 5
we give some final remarks. We gather material relevant to
all sections in four appendices. In AppendixA, in partic-
ular, we give a parameterization for mappings of normal
matrices that we find useful in discussing renormalization
of mass and mixing matrices.

2 Hermitian mixing matrix

The simplest model of fermion mixing consists of N Dirac
fields ψa, a = 1, . . . , N , which we collect in a column field
ψ, interacting with a scalar field φ through a Yukawa cou-
pling. The Lagrangian is given by

L = −1
2
φ0(✷ +mφ

2
0
)φ0 +ψ0(i∂/−M 0)ψ0

+ψ0H0ψ0φ0 − ξ0
3!
φ3

0 − λ0

4!
φ4

0 , (1)

the subindex 0 indicating bare fields and parameters. The
Yukawa interaction term is specified by a matrix of cou-
plings H, whose elements are the expansion parameters
in perturbation theory. M is the fermion mass matrix,
which is assumed to be regular (i.e., no two of its eigen-
values are equal). The degenerate case will be considered
below in Sect. 2.3. If [M ,H] �= 0, the interaction mixes
flavors. Clearly,M and H must be hermitian. The inter-
action terms in φ3 and φ4 are needed for renormalizability.
If fermions are massless and ξ = 0, L is invariant under
the discrete symmetry ψ → γ5ψ, φ → −φ which forbids
a φ3 term. For massive fermions such a term cannot be
avoided. Because of its simplicity and of its lack of sym-
metries preventing renormalization of its parameters, L is
in some sense archetypal, so we consider its renormaliza-
tion in detail below.
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We never use the summation convention for flavor in-
dices a, b, c, . . . . Space-time indices are denoted by Greek
letters, with summation over repeated indices always un-
derstood.

We write L in terms of renormalized fields and cou-
plings by introducing renormalization constants. The field
φ renormalizes multiplicatively: φ0 = Z

1/2
φ φ = (1 + 1/

2δZφ)φ. In MS Zφ = Zφ(H, λ, d) [7], whereas in OS Zφ =
Zφ(H, λ, d;m2

φ/µ
2,M/µ, ξ/µ). We do not expect multi-

plicative renormalization of λ, which already at one loop
receives O(H4) divergent contributions from a box dia-
gram, λ0 = µε(λ + δλ). The dependence of δλ on the
parameters of the theory is analogous to that of Zφ. In
these expressions d = 4− ε is the dimension of space-time
and µ the mass scale of dimensional regularization.

The mass m2
φ will mix under renormalization with the

other dimensionful parameters in L. By dimensional anal-
ysis we have

mφ
2
0
= Z(1)

mφ
m2
φ +

∑
abcd

δZ
(2)
abcdMabMcd + δZ(3)

mφ
ξ2.

In OS renormalized masses are physical, so Mab = maph
δab and

mφ
2
0
= Z(1)

mφ
mφ

2
ph +

∑
ab

δZ
(2)
ab maphmbph + δZ(3)

mφ
ξ2,

the renormalization constants δZ(j)
mφ depending on H, λ,

d and ratios of dimensionful parameters. In MS there is
no dependence of δZ(j)

mφ on masses and ξ [7], butM is not
diagonal. We can choose our flavor basis, however, so that
at tree level M is diagonal. Off-diagonal elements in M
are therefore of second order in H, λ. At one loop we can
then write

δm2
φ = δZ(1)

mφ
m2
φ +

∑
ab

δZ
(2)
ab mamb + δZ(3)

mφ
ξ2 (2)

in both schemes, masses being physical in OS and renor-
malized ones in MS. Similarly, for the cubic coupling we
have

ξ0 = µε/2Z
(1)
ξ ξ + µε/2

∑
ab

δZ
(2)
ξ,abMab, (3)

where we can set Mab = 0 for a �= b at one loop. At that
order, ξ mixes with M through a triangle diagram that
does not depend on ξ or m2

φ.
The renormalized fermion field can be related to the

bare one as ψ0 = Aψ, with A a complex N×N matrix. It
is more convenient to introduce the polar decomposition
of A explicitly,

ψ0 = UZ
1/2ψ, U = e−iδU , Z1/2 = 1+

1
2
δZ. (4)

Both δU , and δZ are hermitian. It is not difficult to show
(see AppendixB), however, that we can always parameter-
ize a unitary matrix U in a neighborhood of the identity
as U = e−iδU ′

e−iδŨ , with δU ′ a linear combination of

diagonal generators and δŨ a combination of the remain-
ing ones. The effect of δU ′ is a flavor-dependent phase
reparameterization of the fermion fields. Although L is
not invariant under such transformations, physical quan-
tities (such as S-matrix elements) remain unaffected by
them. We choose to set δU ′ = 0. In fact, as we shall
see below, in OS renormalization conditions do not deter-
mine the diagonal elements of δU . (Thus, in (4) we have
δZ ∈ u(N), whereas δU ∈ u(N)/a, with u(N) the Lie
algebra of N × N hermitian matrices, and a its Cartan
subalgebra of diagonal generators.)

The renormalization matrices U and Z1/2 have differ-
ent roles in the theory. If, for instance, we take ψa to be
scalar fields and set λ = 0 in L, Z1/2 turns out to be fi-
nite, as we would expect of wave-function renormalization
in a superrenormalizable theory [8]. On the other hand,
in OS, mass renormalization contributions make U diver-
gent. If, furthermore, the scalar fields are real, Z must
be real symmetric and U orthogonal. In this case iδU is
antisymmetric, with diagonal elements vanishing by def-
inition, which is consistent with the fact that no phase
redefinitions are possible for real fields.

The fermion mass matrix mixes under renormaliza-
tion with ξ. Following the parameterization given in Ap-
pendixA, we write

M 0 = U †
m

(
M + δM

)
Um + δZ(ξ)

m ξ,
[
δM,M

]
= 0,

Um = e−iδUm , (5)

with δM, δUm, δZ
(ξ)
m hermitian. Here we have conven-

tionally chosen an additive parameterization for the first
term inM 0. Since we treat ξ as a perturbative parameter,
we collect all dependence on it in the second term. At one
loop δZ(ξ)

m = 0, so we can write M 0 = M + δM with
δM = δM + i [δUm,M ]. δUm is only determined up to
addition of a matrix commuting withM .

Finally, the matrix of Yukawa couplings H is multi-
plicatively renormalized. The most general multiplicative
transformation that can be applied to H preserving her-
miticity is of the form (see AppendixA)

H0 = µε/2W †ZHHW , [ZH ,H] = 0,

W = e−iδW , (6)

with ZH , δW hermitian. In MS ZH and W can depend
only on H, λ and d, so thatW commutes with both ZH
and H, and drops from (6). This would not be the case,
though, if there were another dimensionless matrix in L
on which W could depend such as, e.g., another mixing
matrix for an additional family of fermions.

Substituting these definitions into (1) we see that, out
of the three unitary matrices we have introduced, only
two combinations enter L, namely, UmU and WU . We
can therefore always choose U = 1. In OS, however, we
parameterize the theory so that M 0 and M are simulta-
neously diagonal by setting Um = 1.

The Lagrangian can then be written in terms of renor-
malized fields and counterterms as

L = −1
2
φ(✷ +m2

φ)φ− 1
2
δZφφ✷φ− 1

2
∆m2

φφ
2
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+ ψ(i∂/−M)ψ +ψδZi∂/ψ −ψ∆Mψ
+ µε/2ψ (H +∆H)ψφ− 1

3!
µε/2(ξ +∆ξ)φ3

− 1
4!
µε(λ+∆λ)φ4, (7)

with the one-loop counterterms defined as

∆m2
φ = δZφm

2
φ + δm2

φ, ∆λ = δλ+ 2λδZφ, (8a)

∆ξ = δξ +
3
2
ξδZφ, δξ = δZ

(1)
ξ ξ +

∑
a

δZ
(2)
ξ,ama, (8b)

∆M =
1
2

{M , δZ}+ δM + i [δU + δUm,M ] , (8c)

∆H = δZHH + i [δU + δW ,H] +
1
2

{δZ,H}

+
1
2
δZφH. (8d)

In order to compute the renormalization parts of the the-
ory we have first to fix a renormalization scheme.

2.1 Overspecified counterterm parameterization

In (5) and (6) we have given the relation between bare
and renormalized hermitian matrices using the parame-
terization in AppendixA, which is applicable to generic
normal matrices. In the particular case of hermitian matri-
ces a more obvious multiplicative parameterization is the
congruence transformation H0 = A†HA, with A non-
singular and dependent on H. Such a parameterization
must satisfy constraint relations, since it is overspecified
in the following sense.

Let f : u(N) −→ u(N) be a map of hermitian ma-
trices, given by f(H) = A†HA, with A = A(H) non-
singular. Then we can find a non-singular B = B(H)
such that f(H) = B†HB, and[

BB†,H
]
= 0,

[
B†B,f(H)

]
= 0. (9)

To see this, we notice that according to AppendixA there
must be a hermitian matrix ZH commuting withH and a
unitary matrix U such that f(H) = U †ZHHU . Defining
B = Z1/2

H U , we obtain the result. The parameterization
given in AppendixA is minimal in the sense that (9) are
satisfied identically.

2.2 On-shell scheme

In OS we set Um = 1. IfM is regular and diagonal, and
[M , δM ] = 0, then δM must be diagonal, as well asM 0.

The renormalization conditions we impose on the
scalar field self-energyΠφ(p2) areΠφ(m2

φ) = 0 = Π ′
φ(m

2
φ),

where the prime stands for ∂/∂p2. Defining

Ωφ(p2) = − 1
8π2

∑
a,b

HabHba

(
m2
aa0(m2

a) +m2
ba0(m2

b)

+
(
(ma +mb)2 − p2

)
b0(p2,m2

a,m
2
b)
)
, (10)

which is the O(ε0) part of the unrenormalized φ self-
energy, we obtain

Πφ(p2) = Ωφ(p2)−Ωφ(m2
φ)− (p2 −m2

φ)Ω
′
φ(m

2
φ), (11a)

δZφ = − 1
4π2ε

Tr(H2) +Ω′
φ(m

2
φ), (11b)

δm2
φ =

ξ2

16π2ε
− 1

2π2ε

(
2Tr(H2M2) + Tr

(
(HM)2

))
− Ωφ(m2

φ) +m2
φΩ

′
φ(m

2
φ). (11c)

In (10), a0 and b0 refer to finite parts of loop integrals,
defined in AppendixD. (All dependence on the renormal-
ization scale µ is through these integrals and, as is easy to
check, Πφ(p2) does not depend on µ as it should in OS.)
All masses in this section are physical (pole) masses.

For the fermion two-point function, which is a matrix
in flavor space, we write

Γ = p/1 −M −Π(p),

Π(p) = p/ΣV (p2) +ΣS(p2), (12a)

where the form factors are given by

ΣV (p2) = − 1
16π2ε

H2 − δZ +ΩV (p2),

ΣS(p2) = − 1
8π2ε

HMH +∆M +ΩS(p2), (12b)

with

ΩV
ab(p

2) =
1

16π2

∑
c

HacHcbb−(p2,m2
φ,m

2
c),

ΩS
ab(p

2) =
1

16π2

∑
c

HacHcbmcb0(p2,m2
φ,m

2
c). (12c)

Renormalization conditions are expressed in terms ofΣV,S

(p2) by [4]

maΣ
V
aa(m

2
a) +ΣS

aa(m
2
a) = 0,

ΣV
aa(m

2
a) + 2m2

aΣ
V ′
aa(m

2
a) + 2maΣ

S′
aa(m

2
a) = 0, (13a)

mbΣ
V
ab(m

2
b) +ΣS

ab(m
2
b) = 0,

maΣ
V
ab(m

2
a) +ΣS

ab(m
2
a) = 0, (13b)

where in the two last equations a �= b. With these condi-
tions, we obtain for the diagonal two-point functions,

ΣV
aa(p

2) = ΩV
aa(p

2)−ΩV
aa(m

2
a)− 2m2

aΩ
V ′
aa(m

2
a)

− 2maΩ
S′
aa(m

2
a) (14a)

ΣS
aa(p

2) = ΩS
aa(p

2)−ΩS
aa(m

2
a) + 2m3

aΩ
V ′
aa(m

2
a)

+ 2m2
aΩ

S′
aa(m

2
a), (14b)

and for the off-diagonal ones (a �= b)

ΣV
ab(p

2) = ΩV
ab(p

2)− maΩ
V
ab(m

2
a)−mbΩ

V
ab(m

2
b)

ma −mb

− ΩS
ab(m

2
a)−ΩS

ab(m
2
b)

ma −mb
, (14c)
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ΣS
ab(p

2) = ΩS
ab(p

2) +
mamb

ma −mb

(
ΩV
ab(m

2
a)−ΩV

ab(m
2
b)
)

+
mbΩ

S
ab(m

2
a)−maΩ

S
ab(m

2
b)

ma −mb
. (14d)

In both cases, diagonal and off-diagonal, renormalization
constants can be compactly expressed as

δZ = − 1
16π2ε

H2 +ΩV (p2)−ΣV (p2),

∆M =
1

8π2ε
HMH −ΩS(p2) +ΣS(p2). (15)

It is immediate to check, by substituting the expressions
for ΣV,S into these equations, that δZ and ∆M are her-
mitian. With this, the fermion propagator is renormalized
to one loop. We can, however, compute the mass coun-
terterm δM and δU from the expressions (15) for ∆M
and δZ. From (8c) we have

δM + i[δU ,M ] =∆M − 1
2
{δZ,M}. (16)

This equation can always be solved for δM and δU , as
discussed in AppendixC. In this case, in which M is di-
agonal and regular, however, (16) is trivial to solve. δM
is given by the diagonal elements of the r.h.s. of (16) and
δU by the off-diagonal ones,

δMab = (∆Maa −maδZaa)δab, (17a)

δUab =
i

ma −mb

(
∆Mab − ma +mb

2
δZab

)
, a �= b.

(17b)

The diagonal elements δUaa are not determined by renor-
malization conditions. As mentioned above, they only
change the phases of fermion fields, and can be chosen
to vanish.

We consider next the renormalization of the Yukawa
coupling, given by the 1-PI three-point Green’s function
Γ (p1, p2). (Here p1 is the momentum of the incoming
scalar and p2,3 are the momenta of the outgoing fermions.)
At tree level Γ = H is a Lorentz scalar. Expanding the
one-loop Γ in the usual γ-matrix basis, it is clear that only
the scalar form factor can receive divergent contributions,
since the counterterm for Γ in L is a scalar, the other
form factors being finite. This is easily seen also from the
explicit form of the corresponding loop integrals, since by
power counting only the terms containing two powers of
loop momentum in the numerator are divergent, and they
contribute to the scalar form factor only.

We will then focus on F (p1, p2) ≡ 1/4Tr(Γ (p1, p2)).
For concreteness, we assume that the physical value of
the coupling H is fixed by this form factor. F is a scalar
function of momenta, depending on p1, p2 only through p21,
p22, (p1−p2)2. These combinations are fixed if the external
momenta are required to be on their mass shell. Calling
F

(os)
ab the value of Fab(p1, p2) at p21 = m2

φ, p
2
2 = m2

a, (p1 −
p2)2 = m2

b , we impose the renormalization condition

F (os) =H. (18)

(We notice, furthermore, that the hermiticity of the l.h.s.
is guaranteed by CPT invariance, which also requires H
to be hermitian.) At one loop F (p1, p2) is given by

Fab(p1, p2) = µε/2(Hab +∆Hab)− µε/2
1

8π2ε

(
H3)

ab

+ µε/2
∑
c,d

HacHcdHdbh1(p1, p2;m2
φ,m

2
c ,m

2
d)

− µε/2ξ
∑
c

HacHcbh2(p1, p2;m2
φ,m

2
c), (19)

where the loop integrals h1,2 are defined in AppendixD.
The renormalization condition (18) then leads to

∆Hab =
1

8π2ε

(
H3)

ab
−
∑
cd

HacHcdHdbh
(os)
1 (m2

φ,m
2
c ,m

2
d)

+ ξ
∑
c

HacHcbh
(os)
2 (m2

φ,m
2
c), (20)

where h(os)
1,2 refer to the on-shell values of those integrals.

This counterterm is enough to renormalize the scalar form
factor at one loop. We can, in principle, determine the
counterterms to the coupling matrix H as defined in (8d)
through the equation

δZHH + i [δW ,H] = ∆H − i [δU ,H]− 1
2

{δZ,H}

− 1
2
δZφH, (21)

where all the quantities on the r.h.s. are already known.
Equation (21) always has a solution, since by definition
[δZH ,H] = 0, as shown in AppendixC. Unlike (16), in
this case it is more difficult to find the solution alge-
braically in closed form, only some of the contributions
to each counterterm being obvious,

δZH =
1

8π2ε

(
H2)− 1

2
δZφ + · · · ,

[δW ,H] = − [δU ,H] + · · · (22)

Equation (21) can be solved by projecting it over an appro-
priate basis for the algebra u(N) (see AppendixC), which
can be done numerically. It should be clear, however, that
counterterms are completely fixed by renormalization con-
ditions. Once those are established, no other choices are
involved. We notice that diagonal elements of δU con-
tribute to δW , as expected, since a change of phase of
fermion fields leads to a corresponding change in H.

2.3 The mass-degenerate case in on-shell scheme

As discussed in Sect. 2.2 in OS we set Um = 1, so that
M 0 =M+δM , with [M , δM ] = 0.M 0 andM can then
be simultaneously diagonalized. IfM is regular, choosing
a basis in which it is diagonal immediately implies that
δM is diagonal, and then so is M 0. If M is degenerate,
though, δM need not be diagonal even ifM is. We notice
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also thatH can be diagonalized within each eigenspace of
M by means of a unitary transformation of O(H0). We
assume that such a transformation has been performed
and then, in general, δM will not be diagonal within the
mass eigenspaces.

For notational simplicity we assume that there is one
degenerate mass eigenvalue, say m1, with multiplicity 1 <
r < N (r = N being the trivial case M ∝ 1), all other
masses, mr+1, . . . ,mN , being non-degenerate. The gen-
eralization to the case of several degenerate eigenvalues
presents no difficulties.

The renormalized fermion two-point Green’s functions,
as given by (14) and (15) are unchanged in the mass-
degenerate case if a = b or if a �= b but max(a, b) > r. If
a �= b and both a, b ≤ r, those results need modification.

The renormalization conditions (13b) reduce to the
single equation (a �= b, a, b ≤ r)

m1Σ
V
ab(m

2
1) +ΣS

ab(m
2
1) = 0, (23)

leading to

∆Mab −m1δZab =
m1

16π2ε

(
H2)

ab
+

1
8π2ε

(HMH)ab

− m1Ω
V
ab(m

2
1)−ΩS

ab(m
2
1). (24)

From definition (8c) we see that in this case, ∆Mab −
m1δZab = δMab. Thus, the renormalization condition (23)
fixes the off-diagonal counterterm δMab to the value given
in (24), and that is all that is required to renormalize the
two-point function within the eigenspace of m1. δMab, as
given by (17a) when a = b or a �= b, max(a, b) > r, and
by (24), when a �= b and a, b ≤ r, obviously commutes
with M , since it is non-diagonal only within eigenspaces
ofM . Furthermore, we set δUab = 0, for a, b ≤ r, instead
of (17b). Notice that when r = N , H is diagonal and
therefore so are ΩV,S and δM .

If, however, we want to make each form factor ΣV,S
ab

finite separately, we may impose additional renormaliza-
tion conditions. These are quite arbitrary, as long as they
are consistent with (23) (or (24)). We can, for instance,
take the limit of degenerate masses in (14) and (15) to
get, for a �= b, a, b ≤ r,

δZab = − 1
16π2ε

(H2)ab +ΩV
ab(m

2
1) + 2m2

1Ω
V ′
ab (m

2
1)

+ 2m1Ω
S′
ab(m

2
1), (25a)

∆Mab =
1

8π2ε
(HMH)ab −ΩS

ab(m
2
1) + 2m3

1Ω
V ′
ab (m

2
1)

+ 2m2
1Ω

S′
ab(m

2
1). (25b)

Requiring instead ΣV,S
ab (m2

1) = 0 leads to

δZab = − 1
16π2ε

(H2)ab +ΩV
ab(m

2
1),

∆Mab =
1

8π2ε
(HMH)ab −ΩS

ab(m
2
1). (26)

Both (25) and (26) are consistent with (23).

2.4 MS scheme

In MS we set U = 1. We choose a flavor basis for fermion
fields so that at tree level the renormalized mass matrix
M is diagonal,M =Mphys. Off-diagonal elements ofM
are then O(H2). We write M = M ′ + M̂ , with M ′ =
diag(m1, . . . ,mN ) containing the renormalized masses
and M̂ the off-diagonal elements, and treat M̂ as an in-
teraction term. We write the fermion Lagrangian as

Lψ = ψ(i∂/−M ′)ψ −ψM̂ψ +ψ(δZi∂/−∆M)ψ,

∆M = δM + i[δUm,M ] +
1
2
{M , δZ},

instead of the second line of (7). The tree-level fermion
propagator is thus flavor diagonal.

We notice, parenthetically, that M can be written as
M = exp(iE)M ′ exp(−iE), withM ′ the diagonal matrix
of eigenvalues and exp(−iE) the unitary matrix of eigen-
vectors ofM . Our choice of tree-level flavor basis implies
E = O(H2). At one-loop level, then, M ′ is given by the
diagonal entries of M and M̂ = i[E,M ′] contains the
off-diagonal ones.

Counterterms for the scalar two-point function, as de-
fined by (7) and (8a), are given by the ε-pole terms of (11b)
and (11c). The φ self-energy is then Πφ(p2) = Ωφ(p2),
with Ωφ defined in (10). Requiring that the two-point
function have a zero at p2 = m2

φph leads to the relation
m2
φ = m2

φph −Ωφ(m2
φph) at one loop.

The fermion two-point function can also be read off the
corresponding OS results. Starting from (12), we set δZ
and ∆M to be the ε poles of (15), to obtain ΣV,S(p2) =
ΩV,S(p2). The counterterms δM and δUm can then be
obtained from δZ and δM in the same way as in OS (see
(16)). In this case, unlike in OS, they are not needed to
renormalize the Yukawa coupling. We define

δM = ∆M − 1
2
{M , δZ}

=
1

8π2ε

(
HMH +

1
4
{
M ,H2}) , (27)

which we will use in the one-loop renormalization group
(RG) equation forM below.

We require Γaa(p)ua(p)|p2=m2
aph

= 0 in order to obtain
renormalized masses in terms of physical ones, leading to
the relation

ma = maph − (
maphΩ

V
aa(m

2
aph) +ΩS

aa(m
2
aph)

)
. (28)

Expressing the off-diagonal elements M̂ab, a �= b, in terms
of physical masses and coupling constants involves a choice
of parameterization of the theory. In principle, any value
of M̂ consistent with the renormalization group equations
(given below) is admissible. Different choices of M̂ at one-
loop level will result in different parameterizations of the
renormalized masses ma (the eigenvalues ofM), in terms
of the physical ones maph at two loops. We could give
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M̂ a definite value at a mass scale µ0, and evolve it with
the RG equations to the desired scale µ. For concreteness,
we quote the expression forM obtained by matching the
theory in MS to the OS results,

Mab = (Mph)ab − 1
2
(
maphΩ

V
ab(m

2
aph) +ΩS

ab(m
2
aph)

+ mbphΩ
V
ab(m

2
bph) +ΩS

ab(m
2
bph)

)
, (29)

where Mph = diag(m1ph, . . . ,mNph). When a = b this
equation reduces to (28).

It is convenient to discuss at this point the effect of a fi-
nite, unitary renormalization of fermion fields, with δU =
O(H2) and d-independent. (We exclude from considera-
tion unitary transformations with δU = O(H0), which
correspond to transformations of the classical fields.) The
effect of such a transformation on the basic Lagrangian is
to change M → U †MU and H → U †HU . It is clear
that M remains diagonal at O(H0), so our choice of a
tree-level flavor basis is not altered. Also,M ′ remains un-
changed through O(H2), so (28) still holds. Changes in
M ′ start at O(H4). On the other hand, M̂ changes by a
term i[δU ,M ′] at O(H2). Counterterms still are of the
MS form after the transformation, which is multiplica-
tive and independent of ε. (If, however, δU depends on
masses, counterterms acquire mass dependence.) We see,
then, that this U(N) freedom to perform finite unitary
renormalizations of ψ is a source of arbitrariness in M̂ .
By choosing a definite value forM , as in (29), we are re-
ducing the ambiguity in the choice of one-loop flavor basis
for ψ to the subgroup of U(N) that leaves M invariant.
If M is regular, this is the (U(1))N abelian subgroup of
flavor-dependent phase transformations.

The relation between bare and renormalized Yukawa
couplings is given by (6). As discussed in relation to that
equation, the unitary renormalization matrixW is trivial
in MS in this model. From the value of ∆H in OS, (20),
we get

∆H =
1

8π2ε
H3.

Therefore, from definition (8d) we obtain,

δZH =
1

16π2ε
(3H2 + 2Tr(H2)).

With this value for δZH we can immediately find the one-
loop β function for H,

µ
dH
dµ

= β = − ε

2
H +

1
16π2

(
3H3 + 2Tr(H2)H

)
+ O(H5). (30)

β, which does not depend on λ at one loop, commutes with
H. This need not be the case in more complicated theories
where β can depend on other dimensionless matrices.

With δM and β, from (27) and (30), we obtain the
evolution equation forM ,

µ
dM
dµ

= −γm

=
1

16π2

(
2HMH +

1
2
{M ,H2}

)
+O(H4). (31)

The matrix γm defined by this equation is unconventional
in that it has mass dimension one. At one-loop level we
can takeM on the r.h.s. to be diagonal (in fact, we can set
M =Mph) and setH to its tree-level value, neglecting its
µ dependence. The solution to (31) up to terms of O(H4)
is then

M(µ) =M(µ0)− γm log
(
µ

µ0

)
. (32)

We see that we can diagonalize the one-loop mass matrix
at a given scale µ0. If [M ,H] = 0, thenM also commutes
with γm and we can diagonalize M at all scales. This is
the case, of course, ifM ∝ 1 orH ∝ 1. It is easy to check
that the expression (29) forM is a solution to (31).

We consider, finally, the anomalous dimensions of
fields. From the expressions for δZφ and δZ we find

µ
dφ
dµ

= − 1
8π2Tr

(
H2)φ, µ

dψ
dµ

= − 1
32π2H

2ψ. (33)

Once again, the dependency of H on µ can be neglected
in the r.h.s. of these equations. The evolution of ψ with µ
is given by an hermitian matrix, which is consistent with
U = 1.

3 Normal mixing matrix

The treatment given in Sect. 2 for the case of a hermi-
tian mixing matrix can be readily generalized to normal
mixing matrices. Such a generalization is natural, since it
comprises all mixing matrices that can be diagonalized by
a unitary transformation of fields. Consider, for instance,
a Yukawa interaction of the form

L = −φ†
0(✷ +mφ

2
0
)φ0 +ψ0(i∂/−M 0)ψ0 +ψ0N 0ψ0φ0

+ ψ0N
†
0ψ0φ

†
0 − V

(
φ, φ†) , (34)

where V contains cubic and quartic terms and [N ,N †] =
0. This interaction induces φ–φ† mixing, which must be
taken into account when renormalizing the theory. Besides
that extra complication, the renormalization can be car-
ried out along the same lines as in Sect. 2, where now

N 0 = U
†
NZNNUN , (35)

with UN unitary and ZN normal such that [ZN ,N ] = 0.
Unlike the previous case, though, we cannot parameterize
N 0 in the form B†NB, since congruence transformations
do not preserve normality.

More generally, we must ask whether the normality
of N is stable under renormalization. (The hermiticity
of H in Sect. 2 was obviously stable by unitarity.) That
this is so can be seen by noticing that the Yukawa in-
teraction in (34) is invariant under a (U(1))N symmetry
which, in a flavor basis in whichN is diagonal, is given by
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ψa → e−iαaψa, φ → φ. This (U(1))N symmetry will gener-
ally be broken by fermion mass terms. In MS the Yukawa
coupling will remain normal after radiative corrections are
taken into account, since the fermion wave-function renor-
malization matrix is diagonal in the interaction basis due
to the (U(1))N symmetry (or, in this model, because it
must be a polynomial in N). In OS finite asymmetric
counterterms to the Yukawa coupling are needed, which
render the renormalized Lagrangian asymmetric. An ex-
ample of this well-known phenomenon (see, e.g., Chapter 4
of [10] and references therein) is considered in the next
section in connection with unitary mixing.

4 Unitary mixing matrix

The case of a unitary mixing matrix constitutes an impor-
tant example of non-hermitian, normal mixing. Besides
its obvious phenomenological relevance [1,5,6], this case
is interesting because mixing-matrix unitarity imposes re-
strictive constraints on the form of counterterms, on top
of those stemming from normality.

Furthermore, by considering unitary mixing we can
extend our approach to interactions of the general form
ψ1V ψ2, with two different families of fermions. Indepen-
dent unitary transformations of the fermion fields lead to
a biunitary transformation of the mixing matrix V . In
general normality is not preserved by biunitary transfor-
mations, so our previous results do not apply to this type
of interactions unless V is unitary.

In this case, the (U(1))N flavor symmetry of the pre-
vious section is replaced by a larger SU(N) invariance,
since we can choose the phases of fermion fields so that in
the interaction basis the mixing matrix is just the iden-
tity. For concreteness we consider the simple Lagrangian,
written in the interaction basis,

L = Lγ + Lφ + Lψ + LY + Lem − V,

Lγ = −1
4
FµνF

µν +
1
2
m2
γAµA

µ − 1
2ξ

(∂µAµ)
2
,

Lφ = −φ†(✷ +m2
φ)φ,

Lψ =
2∑
j=1

ψj

(
i∂/− P+M j − P−M

†
j

)
ψj ,

LY = gψ1P+ψ2φ+ gψ2P−ψ1φ
†,

Lem = Q2
φe

2φ†φAµAµ +
(
−jµφ + jµ1 + jµ2

)
Aµ,

V =
λ

6
(
φ†φ

)2
,

jµφ = Qφei
(
∂µφ†φ− φ†∂µφ

)
,

jµj = Qjeψjγ
µψj . (36)

The model consists of two fermion families ψ1,2, each
containing N flavors. These interact with a scalar field
φ trough the Yukawa couplings in LY , which are arbi-
trarily chosen to be chiral, with P± = (1 ± γ5)/2. We
choose g to be real and positive, since its phase can al-
ways be absorbed in φ. All of these fields are charged,

with Qφ = Q1 −Q2, and minimally coupled to a massive
photon field Aµ. U(1) gauge invariance is broken explic-
itly by the photon mass and by the covariant gauge fixing
terms. One-loop radiative corrections to the Yukawa in-
teraction arise only from the couplings of ψj and φ to the
massive photon.

Besides U(1) gauge invariance, L has a global SU(N)
flavor symmetry ψj → e−i

∑
A αAλAψj , broken by fermion

mass differences, with associated current

jµA =
2∑
j=1

ψjγ
µλAψj ,

∂µj
µ
A = i

2∑
j=1

ψj

(
P+[M j ,λA] + P−[M

†
j ,λA]

)
ψj . (37)

Here, λA (A = 1, . . . , N2−1) are the generators of SU(N)
in the fundamental representation. L has also broken
global axial U(1)5 and SU(N)5 symmetries which will not
be needed in the sequel.

The renormalization of this model proceeds much in
the same way as in Sect. 2. We introduce renormalization
constants Zφ, δm2

φ for the φ field and its mass. For the
Yukawa coupling we write g0 = µε/2Zgg, and for the scalar
self-coupling, λ0 = µε(λ+ δλ). By gauge invariance, only
wave-function renormalization is needed for the gauge sec-
tor [8,11],

Aµ0 = Z1/2
γ Aµ, m2

γ0 = Zγm
2
γ , ξ0 = Zγξ,

e0 = µε/2Z−1/2
γ e.

Henceforth, we work in a flavor basis such that at
tree level mass matrices are diagonal. We can always find
unitary matrices V j , W j , (j = 1, 2), so that the mass
matrices are written as M j = V jM

′
jW

†
j , with M

′
j di-

agonal, with positive entries; see Sect. 21.3 in [12]. The
corresponding transformation of fermion fields is ψj =
(W jP+ + V jP−)ψ′

j . Writing the Lagrangian in terms of
primed quantities, and dropping the primes, at tree level
we get

Lψ =
2∑
j=1

ψj (i∂/−M)ψj ,

LY = gψ1P+V ψ2φ+ gψ2P−V †ψ1φ
†, (38)

with V = V †
1W 2 the unitary mixing matrix. In this basis,

the SU(N) global flavor symmetry is given by

ψ1 → e−i
∑

A αAλAψ1,

ψ2 → V †e−i
∑

A αAλAV ψ2, (39a)

jµA = ψ1γ
µλAψ1 +ψ2γ

µV †λAV ψ2,

∂µj
µ
A = iψ1[M1,λA]ψ1 + iψ2[M2,V

†λAV ]ψ2. (39b)

Notice that we can parameterize this flavor symmetry, and
its associated currents, in an infinite number of different
ways. We could have written, for example,
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ψj →
(
P+V

1/2† exp

(
−i
∑
A

αAλA

)
V 1/2

+P−V 1/2 exp

(
−i
∑
A

αAλA

)
V 1/2†

)
ψj .

Using the same argument as above, we can apply a fi-
nite unitary renormalization of fermion fields so thatM1
andM2 are hermitian in each order of perturbation the-
ory. Assuming this has been done, we can use (A.3b) to
write

M j0 = U
†
mjL(M j + δM j)UmjR, (40)

so that in Lψ

(P+M j0 + P−M
†
j0) = Umj(M j + δM j)Umj , with

Umj = P+UmjR + P−UmjL,

Umj = γ0U†
mjγ

0,

UmjU†
mj = 1 = U†

mjUmj . (41)

In OS these expressions are always valid since M j are
real diagonal to all orders, and therefore hermitian. In
MS we can use (40) at one loop, because the tree-levelM j

have been chosen hermitian. The resulting one-loop renor-
malized mass matrices will not be hermitian. As men-
tioned above, we can restore hermiticity at one loop, at a
given renormalization scale, by means of a finite unitary
renormalization of fermion fields. This is analogous to the
choice of one-loop off-diagonal entries of the mass matrix
in Sect. 2.4.

The bare fermion fields are given in terms of renormal-
ized ones by expressions similar to (4):

ψj0 = U jZ1/2
j ψj , (42)

Z1/2
j = (P+Z

1/2
jR + P−Z

1/2
jL ),

U j = (P+U jR + P−U jL) , U jU†
j = 1. (43)

The mixing matrix V introduced in (38) is renormalized
according to (A.1),

V 0 =W †ZV VW , [ZV ,V ] = 0, W = e−iδW .(44)

Since ZV is unitary, we can write ZV = exp(−iδZV ),
with δZV hermitian, [δZV ,V ] = 0. Other parameteriza-
tions for the mixing-matrix counterterms are discussed in
the next section.

Substituting these expressions for bare quantities in L,
we obtain its expression in terms of renormalized param-
eters and fields. The fermion and Yukawa Lagrangians, in
particular, read

Lψ + LY =
∑
j

ψjZ
1/2
j i∂/Z1/2

j ψj

−
∑
j

ψjZ
1/2
j U jUmj(M + δM j)

×UmjU jZ1/2
j ψj + µε/2ZgZ

1/2
φ gψ1P+Z

1/2
1L

×U †
1LW

†ZV VWU2RZ
1/2
2R ψ2φ+H.c. (45)

Just as in Sect. 2, out of the unitary matrices U j , Umj ,W
that we have introduced, only the combinations UmjU j ,
WU1L andWU2R enter L. Clearly, we can always choose
U j = 1. In OS, however, it is convenient to set Umj = 1
instead, so that bare mass matrices are diagonal in the
mass basis.

We see from (45) that for the interaction term to re-
tain its form, with a unitary mixing matrix, we need Z1L,
Z2R ∝ 1. This is the case in MS, due to SU(N) fla-
vor symmetry. In OS finite asymmetric counterterms to
the Yukawa coupling are needed, so the form of the La-
grangian is not preserved.

4.1 Other parameterizations for the mixing matrix

The parameterization of counterterms given in (44) con-
forms to the general form for normal matrices given in
(A.1). Since V 0 and V are both unitary, however, we can
write the relation between them in other ways. Clearly,
V 0 = WV or V 0 = VW are admissible since we can
reach any unitary matrix in a neighborhood of V by vary-
ing W over a neighborhood of the identity in SU(N).
Another usual way of writing the renormalization con-
stants for V is V 0 =W 1VW 2, with W 1,2 unitary [1,4].
This parameterization is convenient from the calculational
point of view. Here we point out that it is overspecified; it
must satisfy constraint relations analogous to those con-
sidered in Sect. 2.1, as we show next.

Given a map F : SU(N) → SU(N) of the form F (V )
=W 1VW 2,W j(V ) ∈ SU(N), we can always find W̃ 1,2
such that

F (V ) = W̃ 1V W̃ 2, W̃ j = W̃ j(V ) ∈ SU(N),

[W̃ 2W̃ 1,V ] = 0 = [W̃ 1W̃ 2,F (V )]. (46)

To see this, we notice that, given W 1,2, we can use the
lemma 1 of AppendixA to write F (V ) as in (44) (or
(A.1)). With the same notation as in (44), setting W̃ 1 =
W †ZV and W̃ 2 =W we get (46).

4.2 On-shell scheme

We consider only the case of regular mass matrices M j .
The extension to degenerateM j can be carried out as in
Sect. 2.3. Renormalization conditions in this scheme break
flavor symmetry, so counterterms are not symmetric, their
finite parts being tuned so the field basis is such thatM j

are diagonal to all orders. Setting Umj = 1 in (41) we
haveM j0 =M j+δM j , with δM j diagonal. To one-loop
order we then have

Lψ =
∑
j

ψj i∂/ψj +
∑
j

ψj i∂/ (P+δZjR + P−δZjL)ψj
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−
∑
j

ψjM jψj −
∑
j

ψj

(
P+∆M j + P−∆M

†
j

)
ψj ,

LY = µε/2gψ1P+ (V +∆V + V ∆g +∆Γ )ψ2φ+H.c.

Lem = Q2
φµ

εe2 (1 + Re(δZφ))φ†φAµAµ

− µε/2jµφ (1 + Re(δZφ))Aµ +
∑
j

µε/2jµj Aµ

+
∑
j

Qjµ
ε/2eψjγ

µ (P−δZjL + P+δZjR)ψjAµ, (47)

where the counterterms are defined as

∆M j = δM j + iδU jLM j − iM jδU jR +
1
2
δZjLM j

+
1
2
M jδZjR, (48)

∆V = i[δW ,V ]− iδZV V + iδU1LV − iV δU2R,

∆g = δZg +
1
2
δZφ, ∆Γ =

1
2
δZ1LV +

1
2
V δZ2R.

The flavor-asymmetric counterterms must be finite, diver-
gent terms being flavor symmetric. In particular, the di-
vergent parts of wave-function renormalization
(δZjL,R)div ∝ 1. The phase of δZφ appears only in ∆g, so
it can be adjusted to keep∆g real. We defined∆V so that
it is perturbatively unitary. In a flavor-symmetric, mass-
independent scheme such as MS, fermion wave-function
renormalization constants are flavor scalars that can be
absorbed in ∆g, no other counterterms to the Yukawa
coupling being needed. In particular, there are no flavor-
breaking dimension 4 operators in L. In OS, however, we
also need ∆Γ , whose finite part can be viewed as either
breaking the unitarity of V or the scalar nature of g.

For the computation of Feynman graphs involving
fermion loops with γ5 vertices we use ’t Hooft and Velt-
man’s prescription, with γ5 anticommuting with γµ for
µ = 0, . . . , 3 and commuting otherwise. We henceforth
set Qφ = 0 for the sake of simplicity. For the scalar field
self-energy, with OS renormalization conditions, we find

Πφ(p2) = Ωφ(p2)−Ωφ(m2
φ)− (p2 −m2

φ)Ω
′
φ(m

2
φ),

Re(δZφ) = − g2N

16π2

(
2
ε

− 1
3

)
+Ω′

φ(m
2
φ),

δm2
φ = − g2

16π2

4
ε

∑
ja

m2
ja − N

2
m2
φ


+
N

3
m2
φ −

∑
ja

m2
ja(1 + a0(m2

ja))

+Ωφ(m2
φ),

Ωφ(p2) =
g2

16π2

∑
a,b

V abV
†
ba(p

2 −m2
1a −m2

2b)

× b0(p2,m2
1a,m

2
2b). (49)

The fermion two-point function for each family can be
expressed in terms of form factors as

Γ j(p2) = p/−M j −Πj(p2),

Πj(p) = (p/ΣL
j (p

2) +∆M †
j)P−

+ (p/ΣR
j (p

2) +∆M j)P+ +ΣS
j (p

2). (50)

The form factors for the first family are given by

ΣL
1ab(p

2) = −δZL1ab − g2

16π2ε
δab −Q2

1e
2 1 + ξ

8π2ε
δab

+ ΩY
1ab(p

2) +Q2
1Ω

V
em(p

2,m2
γ ,m

2
1a)δab,

ΣR
1ab(p

2) = −δZR1ab −Q2
1e

2 1 + ξ

8π2ε
δab

+ Q2
1Ω

V
em(p

2,m2
γ ,m

2
1a)δab,

ΣS
1ab(p

2) = m1aQ
2
1e

2 3 + ξ

8π2ε
δab

+ m1aQ
2
1Ω

S
em(p

2,m2
γ ,m

2
1a)δab. (51)

It is not difficult to check that the dependence on ξ in
the scalar and fermion propagators satisfies U(1)e.m. Ward
identities to one-loop level; see Sect. 18.7 in [11]. Notice the
flavor dependence of e.m. corrections in (51). This flavor
structure is also apparent in the counterterms to the e.m.
current in (47). In (51) we have introduced the quantities

ΩY
1ab(p

2) =
g2

16π2

∑
c

VacV
†
cbb−(p

2,m2
φ,m

2
2c),

(52a)

ΩV
em(p

2,m2
γ ,m

2
c) =

e2

16π2

(
1 + 2b−(p2,m2

γ ,m
2
c)

−b0(p2,m2
γ ,m

2
c) + ξb0(p2, ξm2

γ ,m
2
c)

+
p2 −m2

c

m2
γ

(
b1(p2,m2

γ ,m
2
c)

−b1(p2, ξm2
γ ,m

2
c)
))
, (52b)

ΩS
em(p

2,m2
γ ,m

2
c) = − e2

16π2

(
2 + 3b0(p2,m2

γ ,m
2
c)

+ξb0(p2, ξm2
γ ,m

2
c)
)
. (52c)

The corresponding expressions for the second family are
obtained by changing the family index 1→2 and L ↔ R,
with

ΩY
2ab(p

2) =
g2

16π2

∑
c

V †
acVcbb−(p

2,m2
φ,m

2
1c).

The renormalization conditions are

ΣL
jaa(m

2
ja) +ΣR

jaa(m
2
ja) + 2mja

∂

∂p2

×
[
mjaΣ

L
jaa(p

2) +mjaΣ
R
jaa(p

2) + 2ΣS
jaa(p

2)
]
p2=m2

ja

= 0, (53a)

for diagonal functions and

mjbΣ
L,R
jab (m

2
1b) +∆MR,L

jab +ΣS
jab(m

2
jb) = 0,
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mjaΣ
L,R
jab (m

2
1a) +∆ML,R

jab +ΣS
jab(m

2
ja) = 0, (53b)

for both diagonal and off-diagonal ones [4]. Here we have
used the notation ∆MR

jab ≡ ∆Mjab and ∆ML
jab ≡ ∆M†

jab

for brevity. The renormalization constants are then, in the
flavor-diagonal case,

δZR1aa = −Q
2
1e

2ξ

8π2ε
+Q2

1Ω
V
em(m

2
1a,m

2
γ ,m

2
1a)

+ m2
1aΩ

Y ′
1aa(m

2
1a)

+ 2m2
1aQ

2
1Ω

V ′
em(m

2
1a,m

2
γ ,m

2
1a)

+ 2m2
1aQ

2
1Ω

S′
em(m

2
1a,m

2
γ ,m

2
1a), (54a)

δZL1aa = − g2

16π2ε
+ΩY

1aa(m
2
1a) + δZR1aa, (54b)

∆M1aa = −m1aQ
2
1Ω

S
em(m

2
1a,m

2
γ ,m

2
1a)−m1aQ

2
1

×ΩV
em(m

2
1a,m

2
γ ,m

2
1a) +m1aδZ

R
1aa. (54c)

In the off-diagonal case e.m. contributions vanish and we
obtain the simpler expressions

δZR1ab =
m1am1b

m2
1a −m2

1b

(
ΩY

1ab(m
2
1a)−ΩY

1ab(m
2
1b)
)
, (54d)

δZL1ab =
m2

1aΩ
Y
1ab(m

2
1a)−m2

1bΩ
Y
1ab(m

2
1b)

m2
1a −m2

1b
, (54e)

∆M1ab = m1aδZ
R
1ab. (54f)

We also obtain ∆ML
1ab = m1bδZ

R
1ab, which is consistent

with the above definitions. Notice that off-diagonal coun-
terterms are finite, as required by flavor symmetry. Sub-
stituting these results back into (51) we obtain the renor-
malized fermion self-energy for the first family.

In order to compute δUL,R
1 we proceed as in Sect. 2.

It is convenient to split ∆M into its hermitian and anti-
hermitian parts and, using (48), write an equation anal-
ogous to (16) for each part. Proceeding in that way we
get

δM1ab = δab
m1a

2
(
δZR1aa − δZL1aa

)
, (55a)

δUR1ab =
i
2
m2

1a +m2
1b

m2
1a −m2

1b
δZR1ab − i

m1am1b

m2
1a −m2

1b
δZL1ab, (55b)

δUL1ab = i
m1am1b

m2
1a −m2

1b
δZR1ab − i

2
m2

1a +m2
1b

m2
1a −m2

1b
δZL1ab, (55c)

where in the last two lines a �= b. Diagonal elements
of δUL,R

1 are not determined by renormalization condi-
tions, and are set to vanish. Renormalization constants
for the second family are given by similar expressions, af-
ter changing the family index and exchanging L and R
labels.

We denote the three-point 1-PI function corresponding
to the Yukawa vertex as Γ 3(p1, p2). External momenta are
assumed to be on their mass shell, p21 = m2

1a, p
2
2 = m2

2b,
and p2φ = (p1+p2)2 = m2

φ. Γ 3 can be decomposed in form
factors as Γ 3 = Γ+P+ + Γ−P− + Γ V3µγ

µ + ΓA3µγ
µγ5 +

Γ T3µνσ
µν . Only Γ+

3 receives divergent contributions at one
loop:

Γ+
3,ab = g(V + V ∆g +∆V +∆Γ )ab

+ ge2Q2VabI(p1, p2;m1a,m2b), (56)

where the loop integral I is defined in AppendixD. We
separate in ∆Γ the contributions coming from flavor-
diagonal fermion wave-function renormalization
constants, which are divergent and gauge dependent, from
the finite, ξ-independent off-diagonal ones. Thus,

Γ+
3,ab = g(V + V ∆g +∆V )ab + g

(
∆̂Γ

)
ab

+gVabGab, (57a)(
∆̂Γ

)
ab

=
1
2

∑
c�=a

δZL1acVcb +
1
2

∑
c�=b

VacδZ
R
2cb, (57b)

Gab = 1
2
δZL1aa +

1
2
δZR2bb

+e2Q2I(p1, p2;m1a,m2b). (57c)

An explicit expression for Gab is as follows:

Gab = − g2

16π2ε
+

3Q2e2

8π2ε

+
1
2

(
ΩY

1aa(m
2
1a) +m2

1aΩ
Y ′
1aa(m

2
1a) + (m2

1a → m2
2b)
)

+
Q2e2

16π2

(
− 1

2
Λ(m2

1a,m
2
γ)− 1

2
Λ(m2

2b,m
2
γ)

+ Λξ(m2
1a,m

2
γ) + Λξ(m2

2b,m
2
γ)
)

+ 3Q2e2p1 · p2C0(pφ, p1;m2
γ ,m

2
1a,m

2
2b)

+ Q2e2p1 · p2ξC0(pφ, p1; ξm2
γ ,m

2
1a,m

2
2b), (58)

where

Λ(m2
1a,m

2
γ)

= 1 + b1(m2
1a,m

2
γ ,m

2
1a) + 2b0(m2

1a,m
2
γ ,m

2
1a)

+4m2
1ab

′
0(m

2
1a,m

2
γ ,m

2
1a)

+4m2
1ab

′
1(m

2
1a,m

2
γ ,m

2
1a),

Λξ(m2
1a,m

2
γ)

=
m2

1a

m2
γ

(
b1(m2

1a,m
2
γ ,m

2
1a)

−b1(m2
1a, ξm

2
γ ,m

2
1a)
)
, (59)

and p1 · p2 = 1/2(m2
φ −m2

1a −m2
2b). Some comments re-

garding Gab are in order. The ultraviolet divergent terms
in (58) are ξ-independent, as expected since they must
be cancelled by ∆g. All the remaining gauge dependence
in Gab is contained in Λξ and C0. As is well known, and
as is clear from its definition in AppendixD, the trian-
gle integral C0 with on-shell external momenta diverges
logarithmically as m2

γ → 0. So does Λξ, since we can write

Λξ(m2,m2
γ) =

1
2
(
b0(m2,m2

γ ,m
2)− a0(m2

γ)
)
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− ξ

2
(
b0(m2, ξm2

γ ,m
2)− a0(ξm2

γ)
)
,

with

b0(m2,m2
γ ,m

2)− a0(m2
γ)

=
∫ 1

0
dx log

(
1− x+

m2

m2
γ

x2
)
+ 1.

These infrared divergences must be cancelled in the com-
putation of transition rates by the contribution from real-
photon emission diagrams. We conclude that the infrared
divergent terms must appear explicitly in the amplitude,
and should not be absorbed in the finite part of countert-
erms. In fact, the requirements of infrared and ultraviolet
finiteness, that g and g0 should be flavor independent and
V and V0 unitary, and of gauge invariance, lead us to set

∆g = −(Gab)div =
g2

16π2ε
− 3Q2e2

8π2ε
, and

∆V = 0. (60)

These equations determine the renormalization constants
δZg, δW and δZV through (48) and the above results
for wave-function renormalization constants. Our choice is
not unique, though, since the above requirements still al-
low the finite part of δZg to be redefined by adding gauge-
and flavor-independent arbitrary constants. We could, for
instance, define g through the total φ decay width, or some
other inclusive process. We will not pursue such a phe-
nomenological analysis further here.

4.3 MS scheme

Renormalization in MS scheme turns out, as expected, to
be much simpler than in OS. The renormalized Lagrangian
at one-loop level takes essentially the same form as in (47)
and (48), the main differences being that now δUL,R

j = 0,
δZL,Rj = δZL,Rj 1, and δUL,R

mj �= 0. The mass matricesM j

are diagonal at tree level but not necessarily diagonal, or
even hermitian, at one loop. We are then led to separate
diagonal elements (which are real, given our choice of tree-
level flavor basis) from off-diagonal ones (which are O(g2)
or O(e2)), as discussed in Sect. 2.4.

We define ∆g = δZg + 1/2δZφ + 1/2δZL1 + 1/2δZR2 ,
and set∆Γ = 0, since obviously no asymmetric countert-
erms are needed in this scheme. Furthermore, δW = 0
for the same reasons as in Sect. 2.4. Renormalization con-
stants can then be read off the corresponding expressions
in Sect. 4.2. In particular,

δZL1 = −Q
2e2ξ

8π2ε
− g2

16π2ε
= δZR2 ,

δZg =
g2(N + 1)
16π2ε

− 3Q2e2

8π2ε
. (61)

Divergent contributions from the triangle diagram correct-
ing the Yukawa vertex, which are flavor symmetric, have

been absorbed in δZg. There are no further infinities to
cancel, so that δZV = 0, i.e., V is not renormalized.

We can easily derive renormalization group equations
for the renormalized parameters and Green’s functions.
However, V obviously does not run at one loop in this
model.

5 Concluding remarks

Unitary transformations play a distinguished role in quan-
tum theories, as is well known. In QFT, unitary trans-
formations in some internal “flavor” space preserve the
normalization of kinetic terms and currents, in particular
electromagnetic ones. It is then natural to consider the
class of mixing matrices that can be diagonalized by a
unitary transformation, namely, normal mixing matrices,
and their renormalization properties. This is the subject
of the foregoing.

We point out in Sects. 2 and 4 that the usual param-
eterizations for mixing-matrix counterterms [1,2,5,6] are
overspecified. This fact, of course, does not make them less
useful in any way, but it had not been pointed out in the
previous literature. We explicitly exhibit the constraints
those parameterizations must satisfy, and their solution.
Furthermore, the minimal parameterization given in Ap-
pendixA can be applied also to the case of normal mixing
matrices, which we do in Sect. 3.

In principle, the general case of non-singular, not nec-
essarily normal mixing matrices, although not discussed in
this paper, can also be studied in the framework proposed
here for normal matrices. This is so because any complex
matrix A can be decomposed as A = N + T , with N
normal and T nilpotent such that they can be simulta-
neously brought to diagonal and strictly triangular form,
respectively, by a unitary transformation.

Writing field-strength renormalization matrices in po-
lar components is useful in the OS scheme, as discussed
in Sects. 2 and 4. At one-loop level this is the same as de-
composing those matrices into their hermitian and anti-
hermitian parts, as was done in [1]. As remarked in Sect. 2,
the unitary and hermitian components play different roles
in the theory. Furthermore, the contribution to higher or-
ders in perturbation theory from powers of the one-loop
δU is apparent in this way due to the exponential form of
the unitary matrix U = exp(iδU).
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Appendix

A Mappings of normal matrices

A matrix N ∈ C
N×N is called normal if [N ,N †] = 0

[13]. It can be shown [13] that a complex matrix can be
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diagonalized by a unitary transformation if and only if it
is normal. We denote by n(N) the set of N × N normal
matrices. The Lie algebra u(N) of hermitian matrices, the
group U(N) of unitary matrices, and the abelian algebra
of diagonal matrices are all contained in n(N).

Lemma 1. Let F : n(N) → n(N) be a mapping of nor-
mal matrices such that rank(F (X)) ≤ rank(X) for every
X in n(N). Then, we can write

F (X) = U †ZXU , with [Z,X] = 0,
Z = Z(X) ∈ n(N), U = U(X) ∈ U(N). (A.1)

Proof. We first consider the case of X non-singular. In
fact, in this case there is an open neighborhood of X in
n(N) where all matrices are non-singular. We can apply
the parameterization (A.1) to every matrix in that neigh-
borhood. Using the normality of F (X) and X, we can
write (dropping the argumentX for brevity) F = V †F ′V
and X = W †X ′W , with V , W unitary and F ′, X ′ di-
agonal. Define Z ′ diagonal by F ′ = Z ′X ′. Then U =
W †V ∈ U(N) and Z =W †Z ′W ∈ n(N) satisfy (A.1).

Assume now X has a null eigenvalue with multiplicity
r. We can chooseW so thatX ′ = diag(0, . . . , 0, xr+1, . . . ,
xn) with xj �= 0. Similarly, we can choose V so that
F ′ = diag(0, . . . , 0, fq+1, . . . , fn), with fj �= 0 and q ≥ r.
We then define Z ′ = diag(1, . . . , 1, fr+1/xr+1, . . . , fn/xn)
and proceed as above.

A transformation F satisfying the rank hypothesis of
the lemma may be called “multiplicative,” in the sense
that F (0) = 0. The same argument as in the multiplica-
tive case, with obvious changes, proves the following. Let
F : n(N) → n(N) be a mapping of normal matrices.
Then, for any X ∈ n(N) we can write

F (X) = U †(X +N)U , with [N ,X] = 0,
N = N(X) ∈ n(N), U = U(X) ∈ U(N). (A.2)

We remark that both (A.1) and (A.2) hold for map-
pings of hermitian matrices, F : u(N) → u(N), with Z
and N hermitian, and (A.1) also holds for mappings of
unitary matrices, F : U(N) → U(N), with Z unitary.

Consider, finally, a general matrix function of a hermi-
tian matrix F : u(N) → C

N×N . Using the polar decom-
position F (X) = R(X)UF (X) with UF unitary and R
hermitian, and applying (A.1) and (A.2) to R, we obtain
the parameterizations,

F (X) = UZXV , U = U(X) and
V = V (X) ∈ U(N), Z = Z(X) ∈ u(N),

[Z,X] = 0, (A.3a)
F (X) = U(X + δX)V , δX = δX(X) ∈ u(N),

[δX,X] = 0. (A.3b)

Substituting (A.3b) into the hermitian matrices FF † and
F †F , we recover (A.1) and (A.2).

B Perturbative factorization
of SU(N) matrices

In Sect. 2 we make use of the fact that a unitary matrix
U which is close to the identity can always be factorized
as U = exp(iδU ′) exp(iδŨ), where δU ′ is hermitian and
diagonal and δŨ is hermitian and has zeros on the diag-
onal. A sketch of the proof follows (see [14] for a globally
valid factorization).

We decompose the Lie algebra of hermitian matrices
as u(N) = a ⊕ b, where a is the Cartan subalgebra of
diagonal matrices of u(N) and b its complementary sub-
space. Let U = exp(iεH), with ε small and H ∈ u(N).
We want to show that we can always find A = A(ε) ∈ a
and B = B(ε) ∈ b such that

eiεAeiεB =
N∑
n=0

(iε)n

n!
Hn +O(εN+1). (B.1)

To this end, we write

A =
N∑
n=0

εn

n!
An,

with An ∈ a, and analogously for B, and consider the
equation exp(iεH) = exp(iεA) exp(iεB) which, using the
Campbell–Baker–Hausdorff formula (see [9,14] and refer-
ences therein) can be written as

H = (A+B) +
iε
2
[A,B] +

(iε)2

12
([[A,B],B]

+ [[B,A],A]) + · · · (B.2)

Expanding the r.h.s. in powers of ε, we are led to a set of
recursive equations,

A0 +B0 = H

A1 +B1 =
1
2
[B0,A0]

A2 +B2 = [B1,A0] + [B0,A1]− 1
6
[[A0,B0],B0]

− 1
6
[[B0,A0],A0], etc. (B.3)

which can be solved iteratively up to the desired order.
(Notice that in (B.3) we have used that a is abelian to
eliminate some commutators.) Thus, A0 = diag(H11, . . . ,
HNN ) and B0 =H−A0, A1 = 0 and B1 = 1/2[B0,A0],
and so on. More generally, the equation for the coefficients
of order N + 1 obtained from (B.2) is of the form

0 =
1

(N + 1)!
(AN+1 +BN+1)

+
1
2

N∑
m,n=0
m+n=N

1
m!n!

[Am,Bn]

+
1
12

N−1∑
k,m,n=0

k+m+n=N−1

1
k!m!n!

([[Ak,Bm],Bn]
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− [[Ak,Bm],An]) + · · ·
where the ellipsis refers to higher-order commutators.
Terms with K-order commutators involve Aj , Bj with
j = 0, . . . , N +1−K, which are already known. Thus, by
projecting (AN+1+BN+1) as given by this equation over
a and b we find AN+1 and BN+1.

To summarize, let D be a neighborhood of the iden-
tity in U(N), determining a corresponding neighborhood
d of 0 in u(N), where the CBH formula holds. Then, the
elements of the form eAeB, where A ∈ a and B ∈ b are
dense in D.

C Kernel and image of the adjoint map
of a normal matrix

Consider a fixed N × N normal matrix N . Then, any
matrix A ∈ C

N×N can be written as

A = B + [N ,D], with [N ,B] = 0. (C.1)

Equations (16) and (21) are of this type. Given A and N ,
(C.1) can always be solved for B and D, as we now show
(see also Sect. 3.3 in [9]).

Since N is normal, it can be diagonalized by a uni-
tary matrix. Let λ1, . . . , λr (r ≤ N) be its eigenvalues
and dj(j = 1, . . . , r) their multiplicities. The associated
orthonormal basis of C

N of eigenvectors of N is denoted
by {|λj , αj〉} (j = 1, . . . , r, αj = 1, . . . , dj). Then we have
N =

∑
iα λi|λi, α〉〈λi, α|, and for any A ∈ C

N×N ,

A =
∑
i,α,j,β

Aiαjβ |λi, α〉〈λj , β|. (C.2)

We define the adjoint map associated to N as adN :
C
N×N → C

N×N , adN (A) = [N ,A]. Then the set of or-
thogonal projectors {|λi, αi〉〈λj , βj |} is a basis of C

N×N
of eigenvectors of adN , since, [N , |λi, αi〉〈λj , βj |] = (λi −
λj)|λi, αi〉〈λj , βj |. Therefore, we can rewrite (C.2) as

A =
∑
i,α,β

Aiαiβ |λi, α〉〈λi, β|

+

N , ∑
i,α,j,β
i �=j

Aiαjβ
1

λi − λj
|λi, α〉〈λj , β|

 , (C.3)

where the first term on the r.h.s. obviously commutes with
N . This is the decomposition (C.1).

Whereas (C.3) provides an explicit solution to (C.1),
a slightly broader point of view can be adopted. Consider
the inner product (A,B) = Tr(A†B) in C

N×N . By the
cyclic property of the trace, (A, adN (B)) = (A, [N ,B]) =
Tr(A†[N ,B]) = Tr([N †,A]†B) = ([N †,A],B) =
(adN†(A),B), so (adN )† = adN† . With this, using the Ja-
cobi identity and the normality ofN , it is immediate that
[(adN )†, adN ] = 0 and thus adN is a normal transforma-
tion of C

N×N . Therefore the spectral theorem [13] holds

for adN . In particular, C
N×N = Ker(adN ) ⊕ Im(adN ).

This orthogonal decomposition shows that solutions to
(C.1) exist and are unique up to addition toD of a matrix
commuting with N .

D Loop integrals

In this appendix we give a list of loop integrals used in
the foregoing. More complete calculations can be found,
e.g., in [4,15–17]. Divergent integrals are separated in a
dimensional-regularization pole term and a finite remain-
der. With µ = µ(4πe−γE)1/2 we have

A0(m2) =
iµε

(2π)d

∫
dd<

1
<2 −m2 + iε

= − m2

8π2ε
+

m2

16π2 a0(m2),

a0(m2) = log
(
m2

µ2

)
− 1,

Aµ1 (m
2) =

iµε

(2π)d

∫
dd<

<µ

<2 −m2 + iε
= 0,

Aµν2 (m2) =
iµε

(2π)d

∫
dd<

<µ<ν

<2 −m2 + iε

= − m4

32π2ε
gµν +

m4

64π2 g
µνa2(m2),

a2(m2) = a0(m2)− 1
2
,

A2(m2) =
iµε

(2π)d

∫
dd<

<2

<2 −m2 + iε
= m2A0(m2),

B0(pµ,m2
1,m

2
2) =

iµε

(2π)d

∫
dd<

× 1
(<2 −m2

1 + iε) ((<+ p)2 −m2
2 + iε)

= − 1
8π2ε

+
1

16π2 b0(p
2,m2

1,m
2
2),

b0(p2,m2
1,m

2
2) =

∫ 1

0
dx log

(
(1− x)

m2
1

µ2 + x
m2

2

µ2

−x(1− x)
p2

µ2 − iε
)
,

Bµ
1 (p

µ,m2
1,m

2
2) =

iµε

(2π)d

∫
dd<

× <µ

(<2 −m2
1 + iε) ((<+ p)2 −m2

2 + iε)

=
pµ

16π2ε
− pµ

16π2 b1(p
2,m2

1,m
2
2),

b1(p2,m2
1,m

2
2) =

∫ 1

0
dxx log

(
(1− x)

m2
1

µ2 + x
m2

2

µ2

− x(1− x)
p2

µ2 − iε
)
,

which can also be written
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Bµ
1 (p

µ,m2
1,m

2
2) = pµB1(p2,m2

1,m
2
2),

p2B1(p2,m2
1,m

2
2) =

1
2
(
A0(m2

1)−A0(m2
2)

− (p2 +m2
1 −m2

2)B0(p2,m2
1,m

2
2)
)
.

We also use the combination b−(p2,m2
1,m

2
2) = b0(p2,m2

1,
m2

2)− b1(p2,m2
1,m

2
2):

C0(p1, p2,m2
1,m

2
2,m

2
3)

=
iµε

(2π)d

∫
dd<

1
(<2 −m2

1 + iε) ((<+ p2)2 −m2
2 + iε)

× 1
((<− p1 + p2)2 −m2

3 + iε)
.

C0 is ultraviolet finite. In Sect. 2.2 we use the following
triangle integrals:

H1(p1, p2;m2
1,m

2
2,m

2
3)

=
iµε

(2π)d

∫
dd<

1
<2 −m2

1 + iε
</+ p/2 +m2

(<+ p2)2 −m2
2 + iε

× </− p/1 + p/2 +m3

(<− p1 + p2)2 −m2
3 + iε

,

Tr(H1(p1, p2;m2
1,m

2
2,m

2
3))

= Tr(1)
(

− 1
8π2ε

+ h1(p1, p2;m2
1,m

2
2,m

2
3)
)
,

h1(p1, p2;m2
1,m

2
2,m

2
3)

=
1
2
b0
(
(p1 − p2)2;m2

1,m
2
3
)
+

1
2
b0
(
p22;m

2
1,m

2
2
)

+
1
2
(
(m2 +m3)2 − p21

)
C0
(
p1, p2;m2

1,m
2
2,m

2
3
)
,

h2(p1, p2;m2
1,m

2
2) = Tr(1)m2C0

(
p1, p2;m2

2,m
2
1,m

2
1
)
,

with Tr(1) = 4. Finally, in Sect. 4.2 we define

I(p1, p2;m2
1a,m

2
2b,m

2
γ)

=
1
2

µε

(2π)d

∫
dd<∆µν(<)

×Tr (P+γ
µ(</+ p/1 +m1a)P+(</− p/2 +m2b)γν)

((<+ p1)2 −m2
1a + iε) ((<− p2)2 −m2

2b + iε)

=
3 + ξ

8π2ε
− 1

8π2

− 1
32π2

(
3b0(p21,m

2
γ ,m

2
1a) + 3b0(p22,m

2
γ ,m

2
2b)

+ ξb0(p21, ξm
2
γ ,m

2
1a) + ξb0(p22, ξm

2
γ ,m

2
2b)
)

+p1 · p2
(
3C0(pφ, p1;m2

γ ,m
2
1a,m

2
2b)

+ ξC0(pφ, p1; ξm2
γ ,m

2
1a,m

2
2b)
)
.
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